AM Machine Gas Flow Characterization & mprovement - Phase 3

INTRODUCTION/MOTIVATION

PROBLEM STATEMENT:

Boeing Additive Manufacturing needs a way to improve flow characteristics of the cyclic gas flow system within their EOS M290 Laser Powder Bed Fusion printers. Our team has been tasked with designing nozzles & other flow devices to improve the uniformity of flow within the build chamber and reduce dead zones and recirculation points.

TEST SETUP & PROTOTYPE EVALUATION

PIV Data Collection:

- The method we used to analyze the gas flow was particle image velocimetry (PIV).
- Using low-response time cameras in conjunction with laser-illuminated particles, PIV allowed us to map and evaluate the velocity
- distribution of the gas flow. • Key parameters recorded were the velocity in x/y directions and vorticity.

Flow with tracer particles Light-sheet optics Double-pulse laser Camera

RESULTS & FUTURE WORK

IECHANICAL ENGINEERING

UNIVERSITY of WASHINGTON

Cole Nouwens¹, Jonathan Singer¹, Yobel Abraham¹, Matthew Dietsch¹, Alexander Leu¹, Aaron Abeyta²

Mock Build Chamber: • To emulate the EOS M290 machine, we used two test set-ups to analyze gas flow in the XY and YZ planes within the build chamber. • Analyzing each plane provided unique insight pertinent to different components of the system (lower/upper inlet, outlet),

- that was used to iterate on
- the existing stock designs.

XY Plane Baseline Flow

XY Flow Context **Baseline XY Heatmap** 225 -0.0 -1.0 >

¹Mechanical Engineering ²Material Science & Engineering

May 29th 2024, Husky Union Building, University of Washington, Seattle

Mechanical Engineering Capstone Exposition